

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.

Puntuación	Criterios de corrección			
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,		
de 2,5 puntos.		Explicación y Resultados.		

JUNIO (PASE GENERAL)

Opción A

Problemas

 A_1 .- En una cierta instalación neumática se dispone de un cilindro de doble efecto cuyos datos son los siguientes:

Diámetro interior = 80 mm.

Carrera = 1000 mm.

Diámetro del vástago = 30 mm.

Carreras de ida y vuelta (ciclo) = 10 ciclos / minuto.

Si la presión de trabajo en el cilindro es de 6 Kp / cm², **determinar**:

- a) La fuerza teórica que efectúa el cilindro, tanto en el sentido de entrada como en el de salida del vástago.
 - **b)** El consumo de aire en dicho cilindro.

 A_2 .- Simplificar por álgebra de Boole la ecuación lógica siguiente:

$$\mathbf{F} = \mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{d} + \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{d}$$

 A_3 .- Una barra cilíndrica de un acero con límite elástico (σ_E) de 310 MPa, va a ser sometido a una carga de 12500 N.

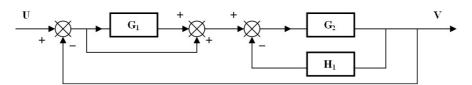
Si la longitud inicial de la barra es de 350 mm. y el módulo elástico del acero es $E = 22 \cdot 10^4$ MPa.

- a) ¿Cuál debe ser el diámetro de la barra para que ésta no se alargue más de 0,50 mm.?
 - * Al realizar el ensayo de resiliencia con péndulo de Charpy de dicho acero, el trabajo absorbido al romper una probeta tipo Mesnager (S = 10 mm x 8 mm) fue de 8,50 kpm.
- b) ¿Cuál es la resiliencia de dicho acero, expresada en unidades SI?

Cuestión

 A_4 - Componentes fundamentales de un equipo frigorífico.

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.


Puntuación	Criterios de corrección				
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,			
de 2,5 puntos.		Explicación y Resultados.			

JUNIO (PASE GENERAL)

Opción B

Problemas

B₁.- Halla la función de transferencia del sistema representado mediante el siguiente diagrama de bloques

- B₂.- Un motor tipo OTTO de 4 cilindros desarrolla una potencia efectiva (al freno) de 65 CV a 3500 rpm.
 Se sabe que el diámetro de cada pistón es de 72 mm, la carrera de 94 mm y la relación de compresión Rc = 9/1. Hallar: a) Cilindrada del motor. b) Volumen de la cámara de combustión. c) Rendimiento térmico del motor (con α = 1,33). d) Par motor.
- **B**₃.- En la determinación de la dureza en una rueda dentada cuya capa superficial ha sido cementada, se procede de la siguiente forma:
 - 1.- En la zona central no cementada, se determina la dureza Brinell, aplicando una carga de 187,5 Kp y utilizando como penetrador una bola de 2,5 mm. de diámetro. La dureza resulta ser igual a 350 H_B.
 - **2.-** En la zona exterior cementada, se determina la dureza Vickers, aplicando una carga de 30 Kp y obteniéndose una huella cuyas diagonales son de 0,272 mm. y 0,274 mm.

Calcular:

- a) El diámetro de la huella obtenida en el ensayo Brinell.
- b) El índice de dureza Vickers obtenido.

Cuestión

 B_{4-} . a) Compresores de émbolo

b) Compresores rotativos.

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.

Puntuación	Criterios de corrección			
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,		
de 2,5 puntos.		Explicación y Resultados.		

JUNIO (PASE ESPECÍFICA)

Opción A

Problemas

A₁.- Simplificar todo lo posible la función:

$$S = abc + a\overline{b}c + ab\overline{c}$$

A₂.- Imagina que tienes en casa un congelador que funciona según el ciclo frigorífico de Carnot y enfría a una velocidad de 850 KJ./h. La temperatura del congelador debe ser la adecuada para conservar los alimentos de su interior, aproximadamente de -12 °C. En la casa la temperatura ambiente es de unos 21 °C.

Determinar:

- a) La potencia que debe tener el motor del congelador para cumplir con su misión.
- **b)** La potencia que debería tener el motor en el caso de que el rendimiento fuera de solo el 50 % del rendimiento ideal de Carnot.
- **A**₃.- * Una barra cilíndrica de un acero con límite elástico (σ_E) de 310 M Pa, va a ser sometida a una carga de 12500 N. Si la longitud inicial de la barra es de 350 mm.
 - a) ¿Cuál debe ser el diámetro de la barra si no queremos que ésta se alargue, más de 0,50 mm. ?. DATO: módulo elástico del acero, $E = 22 \cdot 10^4$ M Pa.

Se somete al ensayo de tracción a la barra anterior hasta que se produce la rotura, obteniéndose un alargamiento total de 16 mm. y un diámetro en la sección de rotura de 6,3 mm.

b) ¿Cuál es el alargamiento y la estricción del material, expresados en %?

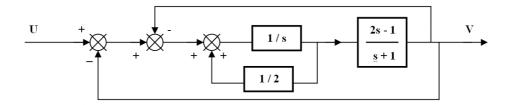
Cuestión

 A_4 - De las combinaciones básicas de bloques, se pide:

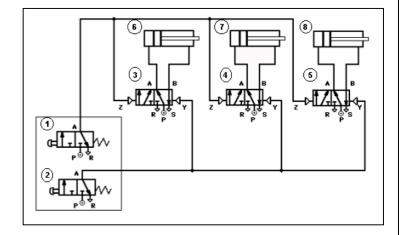
- a) Conexión en serie
- **b)** Conexión en paralelo.

-

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.


Puntuación	Criterios de corrección				
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,			
de 2,5 puntos.		Explicación y Resultados.			

JUNIO (PASE ESPECÍFICA)


Opción B

Problemas

B₁.- Simplificar el siguiente sistema de control hasta conseguir la función de transferencia.

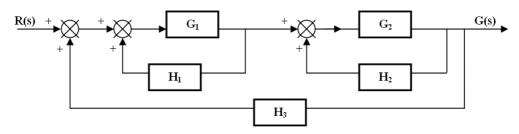
- **B₂- Analizar** el circuito neumático que se propone, indicando:
- a) Componentes que lo forman.
- b) Idea básica sobre el funcionamiento del circuito.
- c) Posibles aplicaciones del circuito.

- **B₃.-** Un motor con un rendimiento térmico del 65 % y un grado de calidad del 85 % consume 9 litros de combustible a la hora. Considerando que la densidad del combustible es de 0.72 g/cm^3 y su poder calorífico Pc = 10000 kcal/Kg.
- Determinar: a) Potencia indicada desarrollada por el motor.
 - **b)** Potencia al freno y rendimiento útil o total del motor, sabiendo que las pérdidas mecánicas ascienden al 18 % de la potencia indicada.

Cuestión

B₄.-. Tratamientos térmicos en los materiales metálicos.

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.


Puntuación	Criterios de corrección			
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,		
de 2,5 puntos.		Explicación y Resultados.		

SEPTIEMBRE (FASE GENERAL)

Opción A

Problemas

A₁.- Halla la función de transferencia del sistema representado mediante el siguiente diagrama de bloques.

 A_2 .- Disponemos de un circuito hidráulico con las siguientes características:

Diámetro de la tubería = 9,525 mm. (3/8 ''),

Velocidad del aceite hidráulico = 2,5 m/s, a una presión de 50 Kp/cm².

Calcular: a) El caudal que atraviesa la tubería.

- **b)** La potencia absorbida, suponiendo un rendimiento del 75 %.
- **A₃.-** Una pieza de una excavadora está formada por dos placas de acero, una normal y otra templada. **Determinar**:
 - a) La dureza Brinell de la placa normal si se emplea una bola de 10 mm de diámetro (constante de ensayo para el acero, K = 30), obteniéndose una huella de 4 mm de diámetro.
 - **b)** La dureza Vickers en la placa templada si con carga de 10 kp se obtienen unos valores para las diagonales de la huella de 0,120 mm y 0,124 mm.

Cuestión

 A_4 -. Diagramas teóricos en los motores endotérmicos.

3

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.

Puntuación	Criterios de corrección			
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,		
de 2,5 puntos.		Explicación y Resultados.		

SEPTIEMBRE (FASE GENERAL)

Opción B

Problemas

- **B**₁.- Un contactor R para el accionamiento de un motor eléctrico, está gobernado por la acción combinada de tres finales de carrera A, B y C. Para que el motor pueda funcionar, dichos finales de carrera deben reunir las siguientes condiciones:
 - 1°) A accionado, B y C en reposo.
- 3°) C accionado, A y B en reposo.
- 2°) **B** y **C** accionados, **A** en reposo.
- 4°) A y C accionados, B en reposo.

Diseñar el circuito mínimo de puertas lógicas que cumple con dichas condiciones.

B₂.- Una bomba de calor que funciona según el ciclo de Carnot toma calor del exterior que se encuentra a una temperatura de 5 °C y lo introduce en una habitación que se encuentra a 22 °C, a un régimen de 50000 KJ/h.

Determinar: indicado

- a) La potencia que debe tener el motor de la bomba de calor para cumplir con lo
- **b)** Si el rendimiento de la bomba de calor fuera del 48 % del rendimiento ideal de Carnot, ¿cuál debería ser entonces la potencia del motor?
- B_3 .- Realizamos un ensayo de tracción con una probeta de 13,8 mm de \varnothing y una distancia entre puntos de 100 mm. Los datos obtenidos se recogen en la tabla siguiente:

Carga (N)	0	2.500	5.000	7.500	10.000	12.500	15.000	16.150	17.520	17.950	17.910	17.060	Rotura 15.000
Δ <i>l</i> (mm)	0	0,019	0,040	0,061	0,080	0,101	0,122	0,201	0,350	0,551	0,752	0,901	1,150

Si en el momento de la rotura el diámetro de la probeta se ha reducido hasta 13,4 mm.:

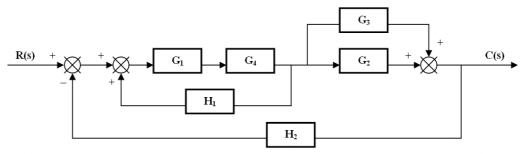
- a) Dibujar el diagrama esfuerzo deformación correspondiente al ensayo.
- b) Determinar el módulo de elasticidad del material.
- c) Calcular el % de alargamiento en el momento de la rotura.
- d) Averiguar el % de estricción.

Cuestión

- **B₄.-**. Para los sistemas de control en LAZO ABIERTO y en LAZO CERRADO:
 - a) Dibujar sus diagramas funcionales (de bloques), indicando sus componentes.
 - **b)** Definir brevemente ambos sistemas.
 - c) Indicar las principales ventajas e inconvenientes del control en LAZO ABIERTO.

Asignatura: **TECNOLOGÍA INDUSTRIAL** Tiempo máximo de la prueba: 90 min.

Puntuación	Criterios de corrección				
La calificación máxima de cada apartado será	Se valorará:	Presentación, Planteamiento,			
de 2,5 puntos.		Explicación y Resultados.			


SEPTIEMBRE (FASE ESPECÍFICA)

Opción A

Problemas

 A_1 .- Imagine que tiene que diseñar una puerta electrónica para un garaje, de forma que sólo debe abrirse cuando se pulse una determinada combinación de botones (A, B y C), según las condiciones indicadas. Diseñar el circuito lógico que permita la apertura de la puerta del garaje, empleando las puertas lógicas que considere oportuno.

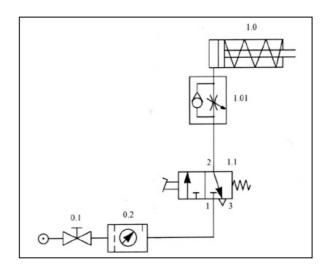
- Condiciones de apertura: 1) C pulsado, A y B en reposo.
- 2) A, B y C pulsados.
- A₂.- Halla la función de transferencia del sistema representado mediante el siguiente diagrama de bloques.

- A₃.- En un ensayo de dureza Brinell se aplican 750 Kp. a una bola de 5 mm de diámetro. Si la huella producida tiene un diámetro de 2 mm.
- a) ¿ Cuál será la dureza?.
- **b)** ¿ Se obtendría la misma dureza si la bola fuese de 10 mm de \varnothing y la carga aplicada de 3.000 Kp?
- c) ¿ Cuál sería la huella en este caso?.
- d) Si al realizar el ensayo de resiliencia con el péndulo de Charpy al material anterior, una probeta cuadrada de 10 mm de lado con una entalla de 2 mm, hace que el péndulo de 30 Kp situado a una altura de 1 m, ascienda sólo hasta los 34 cm. después de la rotura de la misma, ¿Cuál es el valor de su resiliencia expresado en unidades SI.?

Cuestión

 A_4 - Curvas características de los motores endotérmicos.

Asignatura: TECNOLOGÍA INDUSTRIAL Tiempo máximo de la prueba: 90 min.


Puntuación	Criterios de corrección				
La calificación máxima de cada apartado será de 2,5 puntos.	Se valorará:	Presentación, Planteamiento, Explicación y Resultados.			

SEPTIEMBRE (FASE ESPECÍFICA)

Opción B

Problemas:

- **B**₁.-Para el circuito neumático representado en la figura, se pide:
 - a) Explicar el funcionamiento.
 - b) Identificar los componentes (01, 02, ...1.0), e indicar el significado de los números (1, 2, 3) situados sobre los orificios del símbolo del elemento 1.1.
 - c) Dibujar el diagrama espacio-fase.

- **B**₂- Un automóvil circula a 80 Km/h, y se desea que su interior se mantenga a una temperatura de 20 °C, siendo la del ambiente exterior de 32 °C. Para ello, la instalación de aire acondicionado del coche debe absorber 15000 KJ/h por transferencia de calor.
- ¿Qué **potencia** adicional deberá desarrollar el motor para mantener el acondicionador de aire?.
 - a) En el supuesto de un funcionamiento ideal.
 - b) Y de un funcionamiento con una eficiencia igual a la mitad de la ideal.
 - **B₃.-** Una barra cilíndrica de acero, con un límite elástico de 5.000 Kp/cm², es sometida a una carga o fuerza de tracción de 8.500 Kp. Sabiendo que la longitud de la barra es de 400 mm, el diámetro de 50 mm y el módulo de elasticidad del material de 2,1·10⁶ Kp/cm². Determinar:
 - a) Si recuperará la barra la longitud inicial al cesar la fuerza aplicada.
 - **b)** La deformación producida en la barra (ε, en %).
 - c) La mayor carga a que podrá ser sometida la barra para trabajar con un coeficiente de seguridad de 5.
 - **d)** El valor del diámetro de la barra para que su alargamiento total no supere las 50 centésimas de milímetro.

Cuestión

B₄.- Puertas lógicas complejas: NOR y NAND.